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Coaxial Electromagnetic Launcher Calculations
Using FE-BE Method and Hybrid Potentials
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Abstract—In this paper, a hybrid method combining finite
and boundary elements (the FE-BE method) is presented to
analyze the transient electromagnetic /mechanical behavior of
coaxial induction launchers (i.e., the coilgun). The correspond-
ing initial/boundary value problem is formulated in terms of the
hybrid potentials, which mixes the vector and scalar magnetic
potential functions. The problem fs assumed to be axisymmetric
and the forcing currents are circumferential. Thermal effect
due to ohmic losses is considered during the launching
processes.

L INTRODUCTION

Lately, the increased attention to the induction coil
launchers has promoted the publication of a number of
numerical models for their analysis and design; e.g., the
cylindrical current sheet model [1], the current filament
method [2], and the circuit approach [3]. In these models, the
conductors were simulated with either current sheets or
filaments. In this paper, a comprehensive model combining
the FE-BE methods is developed for more advanced and
efficient study on the transient behavior.

In practice, the FE method is a robust general approxima-
tion process. However, it is difficult to model a physical
system with infinite domain, which occurs in many of the
electromagnetic problems. To overcome these difficulties we
use the boundary elements, which represent the exterior
infinite region, in conjunction with the finite elements, which
solve the complex problem in the near domain. The concept
of this hybrid FE-BE method was used in several applica-
tions for magnetostatic field analysis [4, 51 and eddy current
problems [6].

The launching problem is seldom treated in detail because
of the difficulty of adaptation of the finite element mesh to
the complex change in fields and mechanical positions of the
stator and the projectile. With the hybrid FE-BE method, this
moving mesh is easy to deal with if the moving body is
modeled with finite elements and enclosed by boundary
element contours. This part of mesh then adheres to the body
and moves with it.

The corresponding elecromagnetic problems are formulat-
ed in terms of the magnetic potential functions. To minimize
the set of degrees of freedom and to maintain numerical
stability simultaneously, the method of hybrid potential [7] is

used. The concept is to use the vector potential pair A

M.D. Driga
Institute for Advanced Technology
The University of Texas at Austin
Austin, Texas 78759

and v in the conducting area and a magnetic scalar potential
¢ elsewhere, with the interface consistent with the conductor
surface. : '
The problem is assumed to be axisymmetric. Fig. 1 illus-
trates a typical problem geometry. In this figure, Q,

‘denotes the subdomain occupied by the field coils, while £,

and Qg are the regions occupied by the air and the moving
projectile, respectively. In the present formulation hysteresis,
displacement currents, polarization; and free space charges
are neglected. All parts constituting the device are assumed
to be rigid. '

Q, (air)
Q3

Q, (field coils)

(projectile)/ B>:I '

Ly

Fig. 1: The typical problem geometry of a multi-stage
coaxial Electromagnetic launcher.

Temperature rise due to ohmic losses is considered with
the assumption that the ohmic losses dissipate adiabatically
in the conductors. The assumption is reasonable for the rela-

" tively short duration of launching process ( ~ 10-3/s).

Together with various special numerical treatments [8, 9],
a computer program TEXCAL (Texas Electromagnetic
Coaxial Launcher Analysis Code) was developed for this
analysis. Two example problems are presented, along with
the numerical results generated by TEXCAL.

1. GOVERNING EQUATIONS

Two sets of governing equations are involved in this
problem. The first one is associated with the electromagnetic

field. With the previous assumptions, we have:
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where H, J, E, B, v, W, o, T are magnetic field intensity,
current density, electric field intensity, magnetic flux density,
velocity vector, permeability, conductivity and temperature,
respectively. The second term on the right-hand side of (2),

Vx (; x 3). accounts for the moving behavior of the projec-
tile and may have a nonzero value when the spatial descrip-
tion is used.

When there is no source current along the interface
between two different materials, the following boundary con-
ditions must hold:

B]';;x"' Bz';2=0 (7)

Hixm+ Hixm=0 8)

where the subscripts 1 and 2 denote the material numbers, m
is the outward unit normal for material i along the interface.
The second set of governing equations deals with the
motion of the concluding projectile. Due to the axisymmetric
assumption, the only nonvanishing components of the
velocity vector are the axial linear velocity and the spinning
component. Usually the spinning’ component is used only to
provide gyroscopic stability for the projectile during post-
launch flight [10], and so is not considered in this paper.
From the Newton's Law, we obtain the equation of motion

MPz J

dt 0
where M is the mass of the moving body which occupies
domain Q3, v, is the linear velocity in the axial direction z.
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The integrand in the equation, Jx B is the Lorentz force,
with the subscript z denoting the component in the axial
direction.

1. THE HYBRID POTENTIALS

A general formulation of the potential function for the
electromagnetic field calculation is the four component

vector including the magnetic vector potential A and an
electric scalar potential v. For the axisymmetric case with the
source current flowing invariantly in the circumferential
direction, and the axial linear motion as the only moving
component of the projectile, the problem reduces to the
solution of one component of the magnetic vector potential
Ag.

The magnetic scalar potential ¢ is used in the area where
no eddy current occurs. For most problems, the current-
carrying conductors occupy a relatively small fraction of the
total region. It is evident that the introduction of ¢ does
greatly reduce the effort in computation. However, this
scalar potential is not a single-valued function of position
when the region in which ¢ is defined is multiply connected.
A solution to this problem is to turn the scalar region into a

—

simply connected one by introducing the A regions [11]

spanning the holes in the conductors, where the A regions
denote the nonconducting subareas modeled in terms of the
magnetic vector potential. For the problem in Fig. 1, a set of

A regions is introduced and shown as the shaded areas in
Fig. 2.

- Fig. 2. A setof A regions are introduced to turn the
relevant region into a simply connected one.

By using this concept of hybrid potentials, the problem is
then formulated in terms of the magnetic vector potential in

—

both the conducting areas and the A regions, and the
magnetic scalar potential elsewhere. Therefore, in &; (i =

1,3),and the A regions



A v.1vas+lLlac=1 (10)
e

ot W

where Jq = 0 in Q, and the A regions. In

Qz-{; regions},
V..L.Vd):()
Ho

These two sets of potential functions Ag and ¢ are related by
the boundary conditions along the interface

-po(V¢-;)=Von;o~;; 12
-V¢X;=&VXA929X;; (13)

where 7 is defined as the outward unit normal to the surface

of Qz . .

The'axial velocity v, does not appear in the above
equations because the material description is used in charac-
terizing the axial movement.

With the above formulations, the hybrid FE-BE method is
then applicable. As shown in Fig. 3, the shaded areas, i.e.,

—

the field coils, moving body, and A regions are represented
by finite elements. The open region, the air, is represented by
boundary elements. The boundary element contours, consis-
tent with the material interface, are shown as dashed lines:.

boundary elements finite element regions

Fig. 3: An application of the FE-BE hybrid method to the problem.

IV. SIMULATION OF A SINGLE-STAGE INDUCTION LAUNCHER

This example is chosen to demonstrate the capability of
TEXCAL. The problem is similar to the one considered in
[2). Fig. 4 shows the initial geometrical configuration of the

an
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cross section of the device in the r - z plane. .This launcher
device consists of a field coil, which is made of 10 turns of
60% packing copper litz, and a monolithic smgle-turn
armature assembly mainly made of aluminum.

field coil 5 cm
o e |E
projectile —» §E|s
[ ] -
_ ! 5cm 13 -
axisofsymmetry §§ -
-

Fig. 4: The initial configuration
for the single-stage launcher,

As shown in Fig. 5, the field coil was modeled with 10
parallel coaxial current filaments while 19 filaments were
used for the armature. A FE-BE mesh of linear elements, as
shown in Fig. 6, is constructed here to simulate this current
filament model with 10 and 19 finite elements for the coil
and armature, respectlvely The extra finite elements in thls

model account for the A regions. For those data not
revealed in [2), values were inferred from other sources [12-
13]. -
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Fig. 5: The filament model.
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Fig. 6: The FE-BE model simulating the filament model.

Fig. 7 and Fig. 8 present a comparison of the solutions
obtained from the FE-BE and filament models at time
0.0155 ms, at which the input current reaches its peak value.

~ Shown in Fig. 7 are the eddy current distributions versus the

axial position in the projectile. The corresponding tempera-
ture distributions are shown in Fig. 8. Shown in Fig. 9 is the
normalized velocity of the projectile versus time, along with
the values of input current density in the field coil.
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Fig. 7: The eddy current distributions vs. the axial positions in
the launcher from the two models at time 0.0155 ms.
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Fig. 8: The temperature distributions vs, the axial position in
the launcher from the two models at time 0,0155 ms,

vel / vel max

<
-

0.0 0.24
Time (102 s)

Fig. 9. The normalized values of input current
density and velocity vs. time.

Due to possible discrepancies in the data, the results from
the FE-BE and the filament models would not be expected to
match exactly. However, they so far appear to show good
agreement in the trend of the solutions.

V. SIMULATION OF A FIVE-STAGE LAUNCHER

To accelerate the projectile up to a hypervelocity, a multi-
stage launcher device is necessary.

In this example, a five-stage launcher is simulated. Each
coil in this system has its own capacitor power bank which is
turned on by using some ‘sense and switch’ approach.
Through the sensors, the rise time of the coil is determined
upon arrival of the launcher so that correct timing of the
power discharge at each stage is ensured. A 5 kg aluminum
projectile is accelerated in the field produced by the five coils
located to one another with a spacing of 1.07 cm. The
feature of sense and switch is incorporated into TEXCAL so
that each coil is turned on when the projectile reaches a
certain position. Fig. 10 shows the cross section and FE-BE
model of the device at its initial position.

1.07 cm

5 14 10.7 cm
coi coi coil 3-»llcoitz [Tecoit 7], E
e s el L
£ 20.3¢cm g E..'
(3] wn
~N . 0w |2
projectile o« I~
axis of symmetry 4.47 cm
*Materlal propertles: B=Ho
initial temperature: 293K
field coil projectile initial velocity: 0 m/s
copper litz aluminum Cy = 2.53E6 K/m3
6=0 6=3.57E7 mhos/m B . 4.03E-3 ohm - mK
K=Ho (at 293K) M=5kg

Fig. 10. The initial geometrical configuration of the
five-stage launcher in the r-z plane.

Fig. 11 illustrates the distribution of input current density
in the five coils versus time. The launching process

generates a maximum peak acceleration of 1.64 x 108 m/s? at
the fourth stage and final velocity of 553 m/s. Fig. 12 shows
time distribution of the normalized values of the velocity and
acceleration. Fig. 13 shows configurations of the mesh at the
second and third stages, with the armature located at the cor-
responding firing positions.

The shaded area shown in Fig. 14 indicates that 5% of the
projectile is of temperature higher than the melting point at
the end of launching.



Fig. 11. The distribution of current density vs. time in the five coils.
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Fig. 12. Time distribution of normalized values of
the velocity and acceleration.

(the second stage)

(the third stage)

Fig. 13. Configurations of the mesh at the firing
positions of the second and third stages.
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Fig. 14. The shaded area indicates the portion of the projectile
with final temperature higher than melting point.

V1. CONCLUSIONS

A numerical model which simulates the transient behavior
of a coaxial electromagnetic launcher was developed in this
research. Two main ‘hybrid’ features were included in the
model. The problem is first formulated in terms of the com-
bination of magnetic scalar and vector potentials, with the
vector potential applied in the conducting region and the-
scalar potential in the infinite nonconducting area (i.e., the-
air). The resulting initial/boundary value problem is then dis-
cretized by dividing these two subareas into a number of
finite and boundary elements. The model is effective in char--
acterizing the moving behavior of this problem.
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