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ABSTRACT

This paper presents a method based on a
cylindrical current sheet model for the analysis and
design of induction-type coilguns. The paper starts with
a derivation of closed-form formulas which relate the
dimensions of the gun to the performance expressed in
terms of propulsive and local maximum forces on the
projectile, power factor and efficiency of the system,
thermal stress of the projectile armature, distributions
of the flux density around the launcher, and the system
parameters in a multisection coilgun. The paper ends
with a numerical example.

1. INTRODUCTION

Various types of electromagnetic coilguns [1-8]
have received increased attention recently because they
have better characteristics than other electromagnetic
launchers. Major advantages of the coilgun include the
distribution of mechanical stresses that makes it
possible to accelerate heavy projectiles, and the absence
of current-carrying contact between barrel and projectile
that increases the survivability of the barrel. This paper
discusses the design and performance analysis of the
induction type coilgun based on a current sheet
representation.

The current sheet model replaces the currents in
an actual barrel and in a cylindrical tubular projectile
(sleeve) with two equivalent current sheets located at
their equivalent radii (Fig.1). Since the coils in the barrel
of an EM launcher consist either of stranded conductors,
or of many series-connected turns, the current
distribution may be considered as uniform. The sleeve,
on the other hand, is made of a solid conductor and
therefore the skin-effect should be considered. However,
for the best utilization of sleeve material, the thickness of
the sleeve should always be chosen so that the
distribution of current is relatively uniform in the radial
direction. This implies that the skin-effect in the radial
direction of both the barrel coils and the sleeve may be
neglected. The actual current distributions in the barrel
and in the sleeve can be reduced to cylindrical surface
current sheets by letting the thickness of the conductor
vanish while letting the current density (A/m?) go to
infinity. With a good approximation, these radii may be
taken as the average between the inner and the outer
radius of the barrel coils and of the sleeve. In the
cylindrical current sheet model shown in Fig. 1, K}, (m/s)
and K, represent the surface current densities in the
barrel coils and in the sleeve respectively.

equivalent current
sheets representation
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Fig. 1 Transition to current sheet model

The advantage of the current sheet model is that it
allows one to obtain simple relations for system analysis
and -design. The paper starts with a discussion of the
current induced in the sleeve; then follows a derivation
of expressions for the propulsive force, the power factor
of the coilgun, and the distribution of flux density around
the coilgun. Multisection system parameters,
temperature rise in the sleeve and a numerical example
are also discussed in the paper.

2. CURRENT INDUCED IN THE SLEEVE

The excitation current in the barrel may be
represented by a surface current density Ky, located at
an effective radius rp, and directed azimuthally as shown
in Fig. 1. Assuming a traveling-wave form and phasor
notation, one can write:

K, =K, cos(wt-Bz) 6,= Re{Kbej("*’Bz)}eo @)

where ® and B=n/t are the radian frequency and wave
number of the wave respectively. The complex surface
current density Kj in Eq. 1 may be selected as the
reference phasor, i.e. Kp= Kp(1+j0). Neglecting the
displacement current and end effects, one can show that
the azimuthal component of the magnetic vector
potential Ae corresponding to this current density,
satisfies the equation

d?ap 1 dAp
$1 20
dr2 r or

-(B2AE= @
r

with boundary conditions

Hry)- Bir) =K,

B/r) = B{x)) 20)
A(0) =0 and A(0) = finite
where H=B/( and B=VxA.
The solution of Eq. (2) is
rKyrpL{Bry) Ky(Br) <r<ee
ap [P s (3)
\ H By Ky (Bry,) I (Br) 0sr<m,

where I; and K; are modified Bessel functions.
Similarly, if v denotes the velocity of the sleeve with
respect to the barrel, and if one assumes that the surface
current density induced in the sleeve K; is located at the
effective radius rg as shown in Fig. 1, one can also obtain
the magnetic vector potential A_; due to the induced
sleeve current sheet as

A= ucgsrsll(ﬁrs) Kl(Br)
= \ uoKsrsKl(Brs) II(BI’)
It should be noted that, in the induction-type coilgun, the
surface current density induced in the sleeve K, is an

unknown variable. It can be determined by considering
the field contributions due to both current sheets Ky, and

ISTr<oe

4)

0<r<r,
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K at radius rg, or
K,a,1(EE +E§ +v(BP+ BY) ®)

where ag and yg are the sleeve thickness and
conductivity respectively; E}; and ES are the azimuthal
components of the electric field intensities at the sleeve
boundary (r=ry); E? and B; are the radial components of
the magnetic flux density at the sleeve boundary.
Making use of relations Eg=-joAg, B,=jBAg, and Egs. (3)
and (4), one can rewrite Eq. (5) as

Ks= ! Ba’slysVsy'({&rbKl( B!’b)ll(ﬁrs)"L KsrsKl( Brs)ll(ﬁrs)] (6a)
where vy is the synchronous velocity and s=(v,-v)/v,is the
slip between the wave velocity v, and the sleeve velocity v.
Solving Eq. (5a) for Ky, one obtains

Ke_ "8 K, (Bry) Zo

- ’\/?"FST l-sKl(Brs) =
where ¢ is the phase shift between the sleeve current
sheet and the barrel current sheet

6

o= tan1oC W)
s

and s, is the critical slip at which the propulsive force
reaches its maximum value, as in conventional
induction machines

s = 1

¢ “oyasVsBrsKl(Brs)Il(Brs)
For Brg>>1, the Bessel functions K; and I, can be

approximated by exponential functions [9]. Hence, Eq. (8)
can be simplified as

®

_ 2

KoYagv
Eq. (8) or (8a) relate the critical slip directly to the sleeve
conductivity, and thickness, and to the wave velocity. It
is seen from Eq. (7) that the current induced in the sieeve
lags the barrel excitation current by an angle varying
from 90 to 180 degrees. For small values of s, the
amplitude of the sleeve current is approximately
proportional to the slip s and for small values of s¢ it
reaches a maximum value near s=1 i.e. "at standstill".
The ratio of the amplitude of the sleeve surface current
density K to that of the barrel Ky depends on the
normalized gap length Bg (=ng/t) as shown in Fig. 2. It
can be seen that the sleeve current decays almost
linearly as Bg increases. For a given Bg the sleeve
current strongly depends on s/s,.
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Fig. 2 Current ratio Ky/Ky, as a function of the normalized equivalent
air-gap Bg=P(ry-r) with s/s; as parameter. Brg=1.

3. PROPULSIVE FORCE ON THE SLEEVE
The propulsive force is given by the product of the
current induced in the sleeve K, times the radial
component of flux density B,. At the sleeve boundary
r=rg, B, can be obtained from Egs. (4), (5) and (6) as
SC

B.=iB(Ag + Ag) oo HoBryly(Bro)K,(Bry) K, 20 (9)

Using Eq. (6) and (9) one can obtain the local force
density (N/m?2) acting on the sleeve as a function of time
and space.

f=Kzt)B(zt) =F, [cos [2(wt-Bz+9)] +1}  (10)
where the amplitude F, ,, is

P =SS MPrIKI@r)I (Br,) K2
wmTs2es? 2K (r)
It can be seen from Eq. (10) that the peak of the surface
force density is twice that of the time-average force.
Also, the propulsive force varies with the slip s. At the
critical slip s, it reaches a maximum value

_ “oBrgKf(Brb)H(ﬁrs) 2
z,max T(EIS)Kb

N/m? (11)

F 12)

The normalized maximum force density F, max/ (uoKf/ll)
is plotted in Figs. 3 and 4. Figure 3 shows its dependence
on the normalized sleeve radius Prg, with the
normalized air-gap Bg as a parameter, and Fig. 4 shows
its dependence on the pole-pitch 1, with ry as a
parameter. It appears that a small g and a large rg are
always preferred in order to get a large propulsive force.
However according to Fig. 4, for given g and rg, there
exists a value for the pole-pitch T that maximizes the
propulsive force. For g=1 cm, and rg varying from 2 cm
to 8 cm, the pole pitch should be chosen around 15 cm
and not less than 10 cm.
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Fig. 3 Dependence of Fumad &Z%Kg) on Pr, with Bg as parameter
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Fig. 4 Dependence of Fzna/ %“ng) on pole-pitch ©

with rg as parameter (g=1 cm).



4. POWER FACTOR

Generally speaking, the power factor of a coilgun
is relatively low because ferromagnetic materials are not
used. This means that the stored magnetic energy is
much larger than in conventional electrical machines.
Limitations and general relations concerning the power
factor of air-coil launchers are derived in this section.

The electric field Eg at the effective radius r=ry, is
obtained from Egs. (3), (4) and (6) as

Eq=v,B, = jiov BKy(Bry) (Kyryply(Bry) + Krely(Bry)) s
1

S

8, 2
= povsﬁrbKl(Brb)Il(Brb)Kb lisz_'-sz Q +{1 . 23 : QH

si+s

where Q is
Q= Il(Brs) Kl(Brb)
L(Bry) Ky Br,)
Q may be termed the coupling function of the coilgun
since it is a measure of the coupling between the sleeve
and the barrel. Q varies from unity to zero as Bg (=Pry-
PBry) varies from zero to infinity. A normalized air-gap
equal to zero (Q =1), represents 100% coupling between
sleeve and barrel. The variation of Q as a function of Bg
and Prg is shown in Fig. 5. It can be seen from Fig. 5 that
Q decreases sharply as the normalized air-gap Bg
increases and the normalized radius Brg decreases. To
obtain better coupling between the sleeve and the barrel,
one should always choose a small g, and a large Prg.
For a given pole-pitch t this means a larger rg and a
smaller g. For large Pry and Pry, the coupling function
Q may be simplified by approximating the Bessel

functions as exponential functions {9]. Eq. (14) then
becomes

a4)

Q =e 2P (14a)

From Eq. (13), one can obtain the power factor PF of an
induction-type coilgun, i.e. the cosine of the phase shift
between K}, and Eq

PF = Q a5)

2
4/92+(ssi+si(1—9))

(4

Figure 6 shows the dependence of power factor on s/s,
with Q as the parameter. It is seen from Fig. 6 that
there exists an optimal value of power factor as s/sc
reaches a certain value. Fig. 5 and 6 can be used to
determine the relations of the air-gap g, the radius ry,
and the pole pitch 1, or B (=n/1) for a given value of power
factor. For instance, if one wishes to obtain a peak power
factor of 40%, one can see from Fig. 6 that a Q of 0.6 is
required. But, one can also see from Fig. 5 that in order
to obtain an Q of 0.6, Bg must attain the following values:
Bg=0.05 for Pr=0.2, Bg=0.12 for Pr =0.5, Bg=0.16 for
Brg=0.8, and fg=0.19 for fre=1.1.

One can show from Eq. (15) by differentiating with
respect to s/s, that for a given Q a maximum power
factor appears at

_1

L 16
S, 1-Q

Substituting Eq. (16) into (15) one obtains the maximum
power factor

Q

PP=—r——
JOZi41-Q)

an
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Eq. (17) gives a direct and simple relation between the
coupling function and the maximum power factor.
From Egs. (16) and (17) one is able to estimate the power
factor and the ratio of s/s, for a specified value of , or to
determine the value of the coupling function Q for a
specified power factor. The ratio of s/s; is a very
important parameter in a multi-section coilgun, a topic
which will be discussed in detail later. For larger Brg
and PBry, one may relate Bg directly to the optimal power
by using Egs. (14a) and (17) as
g_1, PF+1

t 2n |2PF

(18)

‘where B=n/t was used. Eq. (18) can be very useful for

estimating the required ratio of the air gap to the pole
pitch for a specified power factor. For instance, g/t
should be smaller than 0.0446 (or 1/g>22.4) in order to
obtain an optimal power factor larger than 60%.
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Fig. 5 Coupling function Q as a function of normalized
air gap Pg with fry as a parameter

Fig. 6 Dependence of power factor (PF) on s/s, with Q as parameter

5. DISTRIBUTION OF THE MAGNETIC FIELD IN
THE COILGUN

A coilgun usually operates at a high flux density
(above ten Teslas). Since only nonferromagnetic
materials are involved in the system, the EM energy is
stored everywhere around the launcher. It is very
important to find out the distribution of the flux density
inside the sleeve, in the air gap, and outside the barrel in
order to shield electronic devices near the launcher or in
the projectile.

Inside the sleeve, the radial component of the flux
density can be directly obtained from Eq. (9) replacing rg
by r. Making using Eq. (3), (4) and (6), one obtains the
amplitude of the axial component of the flux density for r
< rg in term of the radial component

A, aAe) I,(Br)
B,(x) {T t=5o) = LG B,(r) 19)
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The total flux density contributed by both components is
then

s, 1
B(r) = HoKbﬁrbKﬁﬁrb)—c‘T[Io(ﬁr)*ll(ﬁr)]f r<rg (20)
2, .25
(524522
Similarly, outside the barrel the amplitude of the

flux density can be obtained from Eq. (3), (4), and (6) in
terms of the coupling function as

2 (201 ; l
B(r) = mfryL,(Bry K, {%}[&(Br%&(ﬁﬂ] 2r2ry (21)

In the air gap (re<r<ry,)
B(r)=poKpprpKi (Bry,)

I @
x{[sg+s2(1+Qo)2]18(ﬁr)+{sg+52(1-gl)2]112(&)\2
s2+52 ‘
where
11([51’5)Ko(5r)}2 { Ildirs)lq(ﬁr)}2
Q=1+ —r-—-—"= Qu=1-— 3"~
0 { K BrolgBn) 1K GBroLen

It should be noted that the flux density in the air gap is
much larger than that inside the sleeve and outside the
barrel because its axial component is the sum of
contributions from both the sleeve and the barrel current
sheets in the air gap. Figure 7 shows the distribution of
flux density around the coilgun. As expected, the flux
density in the air gap is much higher than that inside
the sleeve and outside the barrel. The flux ‘density
outside the barrel decays to about 10% of the air gap
value after about one barrel diameter. More detailed
numerical value will be given in the last section.
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Fig. 7 Normalized flux density vs normalized radius.

Prs=0.8 and Pr,=1.1.

6. MULTISECTION SYSTEM PARAMETERS

To reduce the ohmic loss and, therefore, the
temperature rise in the sleeve, it is necessary to operate
with a small s. This forces division of the barrel of an
induction coilgun into many sections. Every section of
the barrel has a different frequency and a different
voltage level. To obtain a constant average force on the
sleeve in every section of the barrel, it is desirable to have
a constant air-gap flux density for every section. This
implies that the electric field must be proportional to the
frequency. It has been suggested in [10] that for a N-
section launcher system, one can choose Ny
synchronous velocities and Ng-1 exit velocities which
minimize the length of the barrel. This involves a set of
nonlinear equations with 2Ng unknowns the solution of
which can be very difficult to obtain if the number of

sections is very large. A simplified method that is based
on choosing a constant ratio of maximum to minimum
force fluctuation for every section is discussed here. The
solutions obtained from this simplified method are very
close to those obtained from the optimization method.

For the ith section of the barrel, the time-average
propulsive force density may be obtained from Eq. (11)
and (12) as

_ 2Fz,ma.x

AP @3)
2
Sei 8
where s;; is the critical slip in the ith  section.
Introducing a force fluctuation ratio I's F, n,,,/F, into

Eq. (23), one may solve it for s in terms of I and s ; as

S{1» 8;=8, ,i(I‘i«/ r 2-1) (24)
where s;_; is the entrance slip and s; is the exit slip in
the section i. From Eq. (24) one may define an average
slip s,y ; in the ith section

av,

Swi=3 (St §)=T's, @25)

It follows from Eq. (25) that the force fluctuation ratio I
is the ratio of s/s, when s represents the average slip.

This relation is an important parameter as mentioned
in previous sections. The entrance velocity vi.1 and the
exit velocity v; corresponding to s;; and s; can be
obtained from Eq. (24) in terms of the critical slip Se,i
and synchronous velocity vy ; in ith section

i1,i = Vs;[ 1- Sc,i(F -vT=1 )] (26)

v,
This gives a velocity increment in section i

Avi=viv, =2V, 185V 21 27N

It can be seen from Eq. (27) that for a given T, the velocity
increment depends only on the dimensions, since,
according to Eq. (8), the product Vs,iSc,i depends only on
the dimensions. It follows that for given dimensions of

the gun, a constant I' leads to a constant velocity
increment.

If one assumes an equal velocity increment in
every section, the required number of sections Ny of an
induction coilgun with breech velocity v, and muzzle
velocity v, can be obtained from Eq. (27) as

N, =_—m o (28)
28, v/ -1

One may obtain approximately the length of an
induction launcher from a slip-average force. Since the
slip s varies with position along the barrel, the
propulsive force density varies with the slip s and the
position as shown in Eq. (23). One can integrate Eq. (23)
from the entrance slip to the exit slip to obtain a slip-
average propulsive force

Si1

20 ds =

Fzm
In(l" + vT%1) 29)
e n(r + )

where Eq. (24) was used. Let £ denote the mass density of
the conducting sleeve, and v the ratio of the overall mass
of the projectile to the mass of the conducting sleeve.
Then the increment of kinetic energy (per unit volume)



from the breech velocity vy, to the muzzle velocity vm
equals the work done by the electromagnetic force, or
approximately equals the product of the force per unit
volume Fyy/ag and the total barrel length [. This allows
one to determine the length of the barrel of an induction-
type launcher as

1 A,
1=5 V¢ v2-vd F (30)

av

After finding the length of barrel from Eq. (30) one can
determine the length of each section. This is
proportional to the increment of the kinetic energy
within the section if one chooses an equal velocity
increment Av in every section. The length of the ith
section, [, is

2 2
v -V 2

= Ly ‘2“’2 @11 @1
B R

From Eq. (31), it is seen that the length of the first few
sections may be too short since the minimum length of
the section must be at least two pole pitches 2t. One
solution is to merge the first several sections into one

section. This may require the frequency of the source to

be increased stepwise in this section. The minimum
number of sections needed to be merged is determined
from Eq. (31) by letting l;=2t, solving for i=Ny, and taking
the nearest integer or
2 2

T VmVb 1
m- 1 sz + 2 (32)
7. TEMPERATURE RISE IN THE CONDUCTING

SLEEVE }

In a multisection induction coilgun, the
temperature in the sleeve is the sum of contributions
from all sections of the barrel. In the ith gection the
energy dissipated per unit volume of the conducting
sleeve W, ; can be expressed in terms of average slip
Savi and the kinetic energy Wign, gained in that section

N

8., S s 1 2
We = W, = — 2 2 ykvE-vZ)  (33)
diss’ a- Sav,i) kin a- sav,i) 2 g i il
On other hand, this amount of energy also equals the
product of the specific heat ¢ (J/m3K) and the
temperature rise 0;, from which one can obtain the

temperature rise in the ith gection as

_ V&(viz - v:'31 )sav,i
" "2c¢-s

av,i)

‘Making use of Eq. (25), (27) and the relation (vj1+v;)/2 =
(1-84y 1)Vs,i One can rewrite Eq. (34) as

(34)

vEs, v .[
ei= & (ARE-A AV-X (34(1)
c
If we assume a constant velocity increment for every
section, so that the temperature rise in every section is
same, the cumulative temperature rise in the sleeve
when passing through the barrel can be found as

V&SV,

8=N_@,= T(Vi¥) (35)
Substituting Eq. (35) into Eq. (28), one can relate the
required number of sections to the temperature rise in
the sleeve as
v T 2
N, ~20 775 Vi Vi) (36)
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8. NUMERICAL EXAMPLES

To demonstrate the analysis approach developed
in this paper for the induction coilgun, a numerical
example is given in this section. Assume that the set of
specifications for an induction coilgun is:

Initial velocity b

Muzzle velocity vy, 5 km/s

Projectile weight W, 0.5 kg

Sleeve material aluminum

The properties of the aluminum sleeve are:

Mass density 13 2700 kg/m3
Specific heat c 2.56x108 JK1m3
Temperature rise 8, 400°K

Yield stress Om 6.9x107Pa
conductivity v 1.63x107 S/m

Since the sleeve is not uniformly heated along its length
[4], an average temperature rise of 400°K, about half of
that required to reach the melting-point of the material,
was chosen as the value for the maximum allowable
temperature rise.

Starting from Eq. (35) one may choose v=1.3 and
I'=2, and obtain

- cO

57 vEv

From Eq. (8a) or (8) one obtains the thickness of the
sleeve as

v =28.9 m/s

Sc

=2 -44mm
HoYSeVs
If one chooses 1=10 cm and sleeve length g = 21, the
average sleeve radius rg can be determined

Wy
Tg= "
5 2radEv

The required number of barrel sections, Ng=50, is
obtained from Eq. (28). The total length of the barrel is
determined from Eq. (30). By choosing an average
propulsive force density Fa,=107 N/m? one gets [=19.3 m.
One can obtain the length of each section from Eq. (31).
The number of sections required to be merged is given by
Eq. (32), N,=13. This shows that the actual number of
sections the system involves is about Ng-Np,=37 sections.

From Eq. (29) one can obtain the maximum
induction surface force density Fz,max=1.32x107 N/m?
where the equivalent air-gap g=8 mm was used. The
required barrel current sheet is obtained from Eq. 12)
Ky,=1.4x107 A/m, or 0.99x107 A/m in rms value. The
induced sleeve current sheet is given by Eq. (6)
K,=0.752 Ky, with a phase delay of 153.4 degrees.

The value of the coupling function Q = 0.464 is
determined from Eq. (14) or (14a), and the power factor of
the gun PF= 28.3% from Eq. (15). It is noted that the
power factor may be increased by choosing a larger pole
pitch and barrel radius as shown in Egs. (14) and (15).

Flux density was obtained from Egs. (20), (21) and
(22): B=15 T in the air gap; B=4.9 T in the center of the
sleeve; and B < 1 T outside the barrel beyond one barrel
radius.

The electric field intensity in the barrel coils is
given by Eq. (13). Using the dimensions and
specifications in this example, one obtains an electric
field in the last section

Eg=v¢B,=0.23110Kpv,=21 kV/m

where v,=5100 m/s was used. This gives a voltage per
turn in rms value :

=2.6cm
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V/N=21(2nr,)/{2 = 2428 V

If we choose 3.5 cm for the coil width, we obtain the rms
ampere-turns for the barrel coils as
NI=0.035K},=346.5 kA turns.

9. CONCLUDING REMARKS

This paper is based on the assumption that a
quasi-steady state prevails during the operation of the
coilgun, i.e. that the mechanical time constants are
much larger than the electrical ones. In this regime the
paper provides guidelines for the design of coilguns, and
its closed form formulas are advantageous in the
optimization procedures.

With high accelerations, and with energization by
means of capacitors banks, electrical transients cannot
be neglected. An approach based on computer
simulation of these transients is presented in a
companion paper [11].
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